Stéphane COTIN

Head of the Shacra team @ Inria Scientific Advisor @ InSimo

The Helphesee Project

THE PROBLEM...

20 million children and adults are blind today due to cataract

2

... AND A POSSIBLE SOLUTION

Introduce a new technique called MSICS which costs \$50 per surgery
Whereas phacoemulsification (current surgical technique) costs about \$5,000
A cost which is beyond the reach of 95% of the blind persons
A MISCS procedure can be done in 5 to 15 minutes per eye

www.helpmesee.org

A 15-MINUTE SURGERY COULD GIVE THIS GIRL HER EYESIGHT BACK

CLOSE

YES, I WANT TO GIVE A BLIND CHILD OR ADULT A CHANCE TO SEE.

•	\$300 Full Surgery	\$150 Half Surgery	
0	\$75 Anesthesia	Other	

HelpWeSee is a registered 501c3. 100% of this gift is tax-deductible. © 2011 HelpWeSee.

First Name*	Last Name*				
Email Address*					
Card Type*					
Card Number*					
Exp. Date* (Ex: 01/13)	CVV*	7			
Comments and Suggestions					
DONATE					

Other ways to donate

March 12, 2013: Breakthrough in Eye Surgery Simulator Presented to French Prime Minister **AESEE NEWS**

HELPING THE BLIND SEE.

SURGERIES PERFORMED.

READ MORE

THE "HELP ME SEE" PROJECT IN A NUTSHELL

Significant global need

- Estimated 20 million needlessly blind due to cataract, to double in the next decade, if no action is taken.
- 167 million estimated to be progressively blind due to cataract and.
- Poor quality of cataract surgical care and high cost.

Unique solution model

- MSICS A proven, sutureless, 5 10 minutes , high quality and cost effective procedure.
- Lessons from Aviation Training Training Cataract Surgeons through simulation based instructional design and courseware.
- Train over 30,000 highly skilled cataract specialists in Asia, Africa and Latin America.
- Support 8,000 -10,000 surgical practice units to deliver 60 million high quality and affordably priced MSIC surgeries at \$35 \$50 per surgery.

HELP ME SEE: A UNIQUE OPPORTUNITY FOR SIMULATION-BASED TRAINING

Training requirements are very high

- Learn how to handle multiple complications
- Deal with a large number of anatomical variations
- 200 to 300 training sessions on simulation
- Followed by 20 actual surgeries under supervision

90% of the training done using computer-based courseware and simulation

- Requirements from a technical standpoint are very high
 - Actually, probably the highest of any computer-based training system
 - Physics-based realism (tissue deformation, physiology, ...)
 - 250 anatomical variations

SIMULATION: LEVERAGING RESEARCH RESULTS

Advanced physics-based simulation based on SOFA
 Several existing components (e.g. collision detection) were re-used
 Many new, derived components, were developed
 COGE STRUCTURE: OVERVIEW

SIMULATION: LEVERAGING RESEARCH RESULTS

- Advanced physics-based simulation based on SOFA
 Several existing components (e.g. collision detection) were re-used
- Physics-based modeling of the cornea, conjunctiva and sclera
 Each layer can move independently, and resists to intraocular pressure
 Very efficient non-linear finite element technique
- Model of intraocular pressure
 - The pressure drops if an opening is created
 - The pressure controls the eye ball "stiffness"
- Instrument interaction
 - Non-smooth contact problems
 - Cutting (i.e. Real-time topological changes)
 - Haptic rendering including friction

SIMULATION: LEVERAGING RESEARCH RESULTS

Advanced physics-based simulation based on SOFA
 Several existing components (e.g. collision detection) were re-used

Real-time computation using advanced solvers

$$\begin{split} \mathbb{M}(\mathbf{q})\ddot{\mathbf{q}} &= \mathbb{P}(t) - \mathbb{F}\left(\mathbf{q}, \dot{\mathbf{q}}\right) + \mathbb{H}(\mathbf{q})^{T} \boldsymbol{\lambda} \\ \underbrace{\left(\mathbf{M} + h\mathbf{B} + h^{2}\mathbf{K}\right)}_{\mathbf{A}} \underbrace{d\dot{\mathbf{q}}}_{\mathbf{x}} &= \underbrace{-h^{2}\mathbf{K}\dot{\mathbf{q}}_{i} - h\left(f_{i} + p_{f}\right)}_{\mathbf{b}} + h \mathbb{H}(\mathbf{q})^{T}\boldsymbol{\lambda}_{f} \\ \\ \underbrace{(\mathbf{M} + h\mathbf{B} + h^{2}\mathbf{K})}_{\mathbf{A}} \underbrace{d\dot{\mathbf{q}}}_{\mathbf{x}} &= \underbrace{-h^{2}\mathbf{K}\dot{\mathbf{q}}_{i} - h\left(f_{i} + p_{f}\right)}_{\mathbf{b}} + h \mathbb{H}(\mathbf{q})^{T}\boldsymbol{\lambda}_{f} \\ \\ \underbrace{CPU \text{ Solver}}_{\mathbf{+}} \\ \text{Asynchronous GPU Preconditionner}_{=} \\ \text{Real-time computation of complex deformations with contacts} \\ \underbrace{Ix}_{\mathbf{k}} \underbrace{Ix}_{\mathbf{$$

MSICS SIMULATION: FIRST RESULTS

MSICS Simulator Prototype HelpMeSee Project - Moog/SenseGraphics/InSimo/Inria

MANY CHALLENGES...

- From research to products
 - It's a very long path
 - How do we create value along the way?
- In general
 - Development vs. Research
 - Code vs. Publications
- It gets worse in the medical field
 - Added constraints from clinicians
 - Difficulty of working in a multi-disciplanary environment

... BUT REALLY WORTH THE TROUBLE

- If you succeed
 - The outcome can be amazing !
 - Not only from a social stand point
 - But also it helps validate our research
 - And publications can have a broader impact

Many thanks to

Juan Pablo de la Plata Jérémie Dequidt Jérémie Allard Christian Duriez Pierre-Jean Bensoussan Hadrien Courtecuisse Jérémie Ringard

